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Abstract

Transients in a load have a significant impact on the performance and durability of a solid oxide fuel cell (SOFC) system. One of the main
reasons is that the fuel utilization changes drastically due to the load change. Therefore, in order to guarantee the fuel utilization to operate within
a safe range, a nonlinear model predictive control (MPC) method is proposed to control the stack terminal voltage as a proper constant in this
paper. The nonlinear predictive controller is based on an improved radial basis function (RBF) neural network identification model. During the
process of modeling, the genetic algorithm (GA) is used to optimize the parameters of RBF neural networks. And then a nonlinear predictive
control algorithm is applied to track the voltage of the SOFC. Compared with the constant fuel utilization control method, the simulation results
show that the nonlinear predictive control algorithm based on the GA-RBF model performs much better.
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1. Introduction

Compared to conventional heat engines, steam and gas tur-
bine, and combined cycles, fuel cells are considered as an
efficient electrical power generator. Among the various types
of fuel cell, solid oxide fuel cell (SOFC) has attracted consid-
erable interest as it offers wide application ranges, flexibility
in the choice of fuel, high system efficiency and possibility of
operation with an internal reformer [1].

Transients in a load have a significant impact on the life of
the SOFC. One of the reasons is that the fuel utilization changes
drastically due to the load transient. Fuel utilization u¢ is one
of the most important operating variables of the SOFC system.
An overused-fuel condition (uf>0.9) could lead to permanent
damage to the cells due to fuel starvation and an underused-
fuel condition (uf < 0.7) results in a rapid rise of the cell voltage
[2]. For protecting the SOFC stack, the desired range of fuel
utilization is from 0.7 to 0.9.

During the last decades, numerous dynamic models have been
developed to study the effects of load transients on the perfor-
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mance and durability of the SOFC system [3—6]. These models
include the electrochemical, thermal and mass flow aspects of
fuel cell operation. Unfortunately, very few articles are avail-
able on the development of effective control strategies of the
fuel utilization.

The terminal voltage and the fuel utilization cannot be kept
constant simultaneously when load changes [7]. So there are
two control strategies, which can guarantee the fuel utilization to
operate within a safe range. One is directly controlling the input
hydrogen fuel in proportion to the stack current, and the constant
utilization control can be accomplished, which is analyzed in
Ref. [8]. The other one is to maintain a constant cell voltage
at the SOFC terminal. One proper value for cell voltage can
guarantee the fuel utilization within the desired safe rang when
the load changes.

In this paper, a nonlinear model predictive control (MPC)
scheme is proposed to control the voltage and guarantee the fuel
utilization within a safe range. The SOFC system is an uncertain
nonlinear system and its structure and parameters vary with the
change of operating point. So the controller should be robust to
uncertainty and meet closed-loop objectives such as tracking,
regulation and disturbance attenuation.

MPC is a feedback control strategy based on a predictive
model and receding horizon optimization. The important advan-
tage of MPC comes from the predictive model, which allows the
design of controller in bigger horizon than the other control
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Nomenclature

b; width of Gaussian membership function

ci center of Gaussian membership function
CV conversion factor

E open-circuit reversible potential (V)

E° standard reversible cell potential (V)

F Faraday’s constant (c mol~!)

1 stack current (A)

I limiting current (A)

Kn, valve molar constants for hydrogen (mol s~! Pa)
Kn,0 valve molar constants for water (mol s~1 Pa)

Ko, valve molar constants for oxygen (mol s~ Pa)
K, constant

n number of electrons participating in the reaction
N number of cells in the stack

DH, partial pressure of hydrogen (atm)
DPH,0  partial pressure of water (atm)

DO, partial pressure of oxygen (atm)

P cell pressure (atm)

Py rated power (kW)

qr nature gas flow rate(mols™!)

qﬁz input hydrogen flow (mols~—!)

qn, output hydrogen flow (mols~!)
qn, hydrogen flow that reacts (mols~!)
q%n input flow (mols™1)

q; output flow (mols™!)

q; flow that reacts (mols~!)

qigz input oxygen flow (mols—1)

rg-o  hydrogen—oxygen flow ratio

R gas constant (Jmol~! K)

Rohmic Ohmic resistance (£2)

T cell temperature (K)

u; membership function

us fuel utilization

U output voltage (V)

U, rated voltage (V)

|4 compartment volume (m3)

Greek symbols

o electron transfer coefficient at the electrode
B Tafel slope

Nact activation losses (V)

Neone concentration loss (V)

Nohmic Ohmic losses (V)

TH, response time for hydrogen flow (s)
TH,0 response time for water flow (s)

70, response time for oxygen flow (s)
7] reformer time constants (s)

d Tafel constant

algorithms without the form of predictive model [9]. There-
fore, the model is the key to determine the control quality.
The traditional approach usually is based on approximate lin-
earization theory, which is often difficult to identify an accurate

mathematical model of the system and imposes serious restric-
tions on the structure of nonlinear systems [10]. Moreover,
the robustness of the closed-loop system cannot be guaran-
teed, especially when the parameters of plant are uncertain or
there is noise or disturbance in the process [11]. Therefore spe-
cific nonlinear modeling approaches might be required. Neural
networks are considered as an attractive structure to establish
the mathematical relationship of the dynamic system based
on the input—output data. A RBF neural network is a feed-
forward neural network with one hidden layer and can uniformly
approximate any continuous function to a prospected accuracy
[12]. However, a key problem by using the RBF neural net-
work approach is about how to choose the optimum initial
values of the following three parameters: the output weights,
the centers and widths of the hidden unit. If they are not
appropriately chosen, the RBF neural network may degrade
validity and accuracy of modeling [13]. To assure the optimal
performance of the RBF neural network approach for SOFC
modeling, we consider applying a genetic algorithm (GA) to
optimize the RBF neural network parameters in this study.
Genetic algorithms are a kind of self-adaptive global search-
ing optimization algorithm based on the mechanics of natural
selection and natural genetic [14]. Different from conventional
optimization algorithms, genetic algorithms are based on pop-
ulation, in which each individual is evolved parallel, and the
ultimate result is included in the last population. In this paper,
a physical model of a 100 kW SOFC system is used to generate
the data required for the training and predicting of the GA-RBF
model.

This paper is organized into six sections. Section 2 briefly
describes the SOFC system. A dynamic SOFC mathematical
model is built in Section 3. In Section 4 a nonlinear predictive
control algorithm based on a GA-BRF model is explained in
detail. In addition the constant fuel utilization method is also ana-
lyzed. Section 5 shows the results obtained with the two control
algorithms. The last section concludes the paper by analyzing
the obtained results.

2. SOFC system description

The SOFC system includes a fuel processing unit or the
reformer and a fuel cell stack. Hydrogen is a main fuel for most
type of fuel cells. Nevertheless, other fuels such as methane,
methanol, ethanol, gasoline and oil derivatives can also be used
when a reformer is included in a fuel cell system for converting
the fuel to hydrogen.

The basic components of the SOFC are anode, cathode
and two ceramic electrodes. In the fuel cell, fuel is sup-
plied to the anode and air is supplied to the cathode. At the
cathode—electrolyte interface, oxygen molecules accept elec-
trons coming from the external circuit to form oxide ions. The
electrolyte layer allows only oxide ions to pass through and at
the anode—electrolyte interface, hydrogen molecules present in
the fuel react with oxide ions to form steam and electrons get
released. These electrons pass through the external circuit and
reach the cathode—electrolyte layer, and thus the circuit is closed
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[15]. The electrochemical reactions are given as follows:

Anode side : H, + 0%~ — Hy0 + 2e~ )
Cathode side : 1/20,+2¢~ — 0>~ )
Balance reaction : H, +1/20, - H»O 3)

A single cell produces an open-circuit voltage of approxi-
mately 1V, so fuel cells have to be connected together in a series
arrangement to form a stack.

Fuel utilization is one of the most important operating vari-
ables that may affect the performance of fuel cell. It is defined
as

af, —dh, _ T, _ NI
qi"rllz qi‘rllz 2Fqi_r112

uf = 4)

3. SOFC system dynamic model
3.1. Fuel processing unit model

In Ref. [16], the author introduced a simple model of a
reformer that generates hydrogen through reforming methane.
The model is a second-order transfer function. Ref. [7] shows
that fuel process approximated by first-order transfer functions
was suitable for simulation point of view. So the mathematical
form of the model can be written as follows:

a, _ CV
qr B 715+ 1

&)

When these reactants are fed into the SOFC stack where the
reaction described by Eq. (3) occurs, from which it is seen that
full reaction ratio between hydrogen and oxygen is 2 to 1. In
order to allow for oxygen to completely react with hydrogen and
maintain the pressure difference between the anode and the cath-
ode below a certain threshold value, excess oxygen is provided.
And oxygen flow rate is determined using the hydrogen—oxygen
flow ratio ryg_o.

3.2. SOFC stack model

3.2.1. Electrochemical model

The electrochemical oxidation of CO is not considered in our
study, because data in the literature show that the electrochemical
oxidation of hydrogen is faster than that of CO [17]. Hence, the
Nernst voltage E is mainly dependent on the electrochemical
reaction of Hj.

In terms of input and output flow rates and exit molarity, the
ith component material balance for the fuel cell stack can be
written [18,19]:

dpi RT

527( -4} —q;) (6)

According to the basic electrochemical relationships, the
mole flow that reacts ¢; can be calculated as
NI

6 = 55 = 2Kl @)

Replacing the mole flow that reacts by Eq. (7), we can get
the following expression of the hydrogen partial pressure

d

< o gf, — 2K D) (8)

RT
PH, = 7(‘1H2
For orifice that is choked, it could be considered that the molar
flow of any gas through the valve is proportional to its partial
pressure inside the channel, according to the expression

am

~ K, ©)
PH,

Replacing the output flow by Eq. (9), applying the Laplace
transformation to Eq. (8) and isolating the hydrogen partial pres-
sure, yields the following expressions:

/Hz(

- —2K.1I) (10)

PH, () =

v
where TH, = m

Similarly component balances for O, and H,O lead to the
following set of equations:

1/Ko
Po,(s) = T+t 2( , — K1) (1)
1/KH20
=2K I —— 12
PH,0(8) r 1+ 08 (12)

3.2.2. Operating cell voltage

The actual cell potential is decreased from its ideal potential
because of several types of irreversible losses, such as activation,
concentration and Ohmic losses. The equation for polarization
is shown as follows:

Nact = 0+ B logl (13)
RT I

Nconc = ﬁ In(1- E (14)

Nohmic = IR (15)

Applying Nernst’s equation and Ohm’s law (taking into
account Ohmic, concentration, and activation losses), the stack
output voltage is represented as follows:

Vie = E — 10hmic — Neone — Nact (16)
PH, P 2
where E = N EO+RT1 270
PH,0

The dynamic physical model replaces the real SOFC stack to
generate the simulation data required for the identification of the
GA-RBF model. The parameters of the SOFC system are given
in Table 1. The data sources blocks developed in MATLAB is
shown in Fig. 1.

4. SOFC control
4.1. Constant voltage control

The basic frame of the proposed model predictive controller
for the SOFC system is shown in Fig. 2, where y; is the refer-
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Fig. 1. SOFC dynamic model.
Table 1 ence track of the control system, y and yg is the SOFC dynamic
The blocks developed in MATLAB model output and the GA-RBF predictive model output, respec-
Parameter Unit Value tively.
T K 273 A nonlinear model that the controller will use for the opti-
F C mol—! 06485 mization is the first step in designing a nonlinear MPC system.
R JT(molK)~! 8314 This model should be as accurate as possible, while being
N - 384 simple enough to allow for repeated calculations during the
E° v 1 optimization. If the dynamic model developed in Section 3
Kr mol (s 4) " 0996 10 2 is applied in the predictive control scheme, it will consume
K, mol (s Pa)~! 8.32 x 10~° Ppi p : e, :
K0 mol (s Pa)~! 277 % 10-6 much time to obtain the solutions. For this reason, a nonlin-
Ko, mol (s Pa)~! 249 x 1073 ear offline voltage model of SOFC is built by a GA-RBF neural
10, s 2.91 network.
TH, S 26.1
™H,0 S 78.3 L.
Ronmic Q 0.126 4.1.1. Predictive model based on GA-RBF neural network
qi, mol s~ Variable Suppose the operating temperature and pressure of the SOFC
B - 0.11 are kept constant in this paper. The oxygen flow is expressed by
a - 0.05 using the hydrogen—oxygen flow ratio, so the terminal voltage
’IlL ? 200 U is mainly influenced by the inlet hydrogen flow gjj, and cur-
U v Variable rent /. The following NARMAX model is used to describe the
I A Variable controlled voltage system
71 s 5
o - 1.145 k) = flytk = 1), ytk = 2), ..., y(k —ny), utk — 1),
cv - 1
U, \Y 330 I/t(k — 2), ey I/t(k — nu)] (]7)
Pyc kW 100 . . )
g _ 0.8 where y is the SOFC terminal voltage, u is the hydrogen flow
rate and current, ny, and n, are the lags of the output and input,
ol : respectively, and f{(-) is a nonlinear function. In this section we
y | adopt a GA-RBF neural network to identify the nonlinear func-
¥ u J GaRBF ol tion f(-). The structure of the RBF neural network is shown in
— A G Fig. 3.
m . .
e The output of hidden layer is
T
x—ci)' (x—c
u; = exp —w i=12,...,9 (18)
b% 2b;
SOFC system >

Fig. 2. Block diagram of the proposed control system.

where x = (I, qi}‘fz)T, C;=(ci1, cip)! is the center of the ith RBF
hidden unit, and b; is the width of the ith RBF hidden unit.
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Fig. 3. The structure of the RBF neural network.

The output is
q
YR= D wil (19)
i=1

where yr =U; w=[wy, wa,.. .wq]T is the neural network weight
that connects output yr and neuron i in the hidden layer.

In our case, it is done by minimizing the following quadratic
cost function of the output error. This error is calculated by
comparing the output value of the network and the desired output
value.

1 M
J =52 r®) = ymP (20)

k=1

where yR is the output voltage calculated from neural network;
y the output voltage of the dynamic physical model developed
in Section 3; M the number of training data. A gradient descent
algorithm is adopted to minimize J. And the genetic algorithm is
used to obtain the optimum initial values of the following three
parameters: the output weight w;, the centers ¢; and widths b;.

The predictive output of p step can be obtained by the GA-
RBF model as [20]:

yrk+p) = frlytk +p—1), yk + p—2), ...,
yk+p—ny),utk+p—1,utk+p-2),..,
utk + p —ny)l 21

And the error at instance k is defined as

e(k) = y(k) — yr(k) (22)
Therefore the predictive output of feedback system is
yk+pD=yrk+)+ek) (j=12,..p) (23)

where p is the predictive horizon. The method of the offline
model is simple and convenient only if the experimental data or
experience of the input and output variable is obtainable. It is
not necessary to decide the coefficient of the SOFC material and
structure of the mechanism model. Therefore it can be used in
the control system.

4.1.2. Optimization algorithm

At each sample time k, a series of future output values y(k + )
is calculated through GA-RBF predictive model and it is com-
pared to the reference output value y;(k). Referenced trajectories

of output voltage are introduced to avoid excessive movement
of the control input, which are defined as

wk+p=cylk)+(U—cyr 1<j<p,0<c<l)
(24)

where y; and y are the reference trajectories and predictive out-
put, respectively. r is the system set value. The optimization
problem for the model predictive controller is the minimization
of the sum of squared errors between the referenced trajectory y;,
and the predictive output y with an additional penalty imposed
on rapid changes in the manipulated variables. Define objective
function as

JU)y =Y G+ )= yelk+ PP+ Y rPGe+i—1)
J=1 j=1

uk+i—DeU* (25)

where n and m are the predictive horizon and control horizon,
respectively. U* = [Umin, Umax ] 1S the control range. Golden mean
method is used to obtain the optimal output of controller u*(k),
the optimization process is presented as follows [20]:

e Step 1: Define the initial searching area [c1, B1]=[Umin,
Umax]; the initial number of steps k=1; and define ¢,
it is positive and adequately small; the initial searching
points are givenas: A; =o1 + (1 —0.618)(81 — al),k’l =o) +
0.618(B1 — 7). And then, compute the values of objective
function J(11) and J(1)).

e Step2: If By — oy <, then u(k)=(Bx +ay)/2; Otherwise, if
J(h) > J(Ap), go to step 3; if J(Ax) > J(Ay), go to step 4.

o Step 3: apy1 =2k, Pkl = Bio> M1 = A then A = o1 +
0.618(Bk+1 — k+1); and then, compute the value of objective
function J(2}_ ), go to Step 5.

e Step 41 o1 =k, Byl = )»;{, )‘;c—&-l = A, then
Mt =01 +(1 — 0.618)(Br+1 — ak+1); and  then, com-
pute the value of objective function J(Ai4+1); go to Step
5.

e Step 5: k=K + 1, return to Step 2.

After iterations for several times, the optimal control moves
u*(k) can be obtained.

4.2. Constant fuel utilization control

According to Eq. (4), the operation of the SOFC stack with a
fuel input proportional to the stack current results in a constant
utilization factor in the steady-state. Thus, the SOFC is operated
with a constant steady-state utilization factor by controlling the
natural gas flow to the stack as [8]

_ NI
"~ 2Fug

qt (26)
where ugg is the desired utilization in steady-state. Furthermore,
because the fuel processor is specially considered, the relation-
ship between a small change of stack current Al and a small
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change of hydrogen input in Aq}'{‘2 fed to the SOFC stack can be
derived as [8]:

N 2K,

Al = Al
2 Fugs(1 + 155) ugs(1 + t¢s)

in __
Agy, = 27
From Eq. (4), the small-signal relationship between Auf,v Al
and Agyy, about their initial steady-state values ufs, lo, and gfy,
can be written as
in

9H,,0 Ufs \ in
A 28
2k, M g, A (28)

Al =

Under constant ug control, substituting Eq. (27) into Eq. (28),
and Eq. (28) can be rewritten as

Uty TfS
Io 1+ s

Aug = (29)

where Iy the initial stack current, is related to the initial q}:fz, 0
through Eq. (4).

5. Simulation

In this section, we present numerical experiments to show
the validation of the proposed nonlinear predictive control
scheme based on the GA-RBF neural network model of the
SOFC.

For the purpose of identification, the input signals of the
dynamic physical model developed in Section 3 are uniformly
random, including the hydrogen flow rate (0—1.2mols™!) and
the current (0—800 A). To obtain values at integer time points, the
fourth-order Runge—Kutta method was used to find the numer-
ical solution to the dynamic physical model in the simulation.
A set of 3000 data was collected from the simulation. The first
1000 data were used for the identification of GA-RBF model,
while the remaining 2000 data were used for validation pur-
poses.

In order to reduce the numbers of the parameters and improve
the speed of program debug, the hidden layer of the RBF neural
network is chosen 2 nodes. After many trials, a population size of
50, a crossover probability of 0.4, and a mutation probability of
0.001 are used. The optimized initial values of the parameters are
shown in Table 2. After the optimized initial values of the three
parameters are obtained, we utilize the gradient descent learning
algorithms to adjust them. Root mean square error (RMSE) is
employed here to evaluate modeling results, which is calculated

Table 2

The optimized initial values of widths, centers and output weights
by 0.4856
by 1.1062
c11 0.5678
c12 —0.3561
1 —0.8409
(&%) 1.032
wi 0.4567
wy —0.2365

375 T r T
gqH2=0.8(physical model)
350 +  gH2=0.8(GA-RBF model) |+
gqH2=0.9(physical model)
325% *  qH2=0.9(GA-RBF model) |
% qH2=1.0(physical model)
300 | *  gH2=1.0(GA-RBF model) |4
S 275} 4
[0}
o
S 250 -
>
225+ 4
200 + 4
175+ B
150 1 1 1 1 1 1 1
0 100 200 300 400 500 600 700 800

Current (A)

Fig. 4. Cell terminal voltage under various current and hydrogen flow.

by

1 N
RMSE = | > 0(k) — 3(0)? (30)
k=1

where N is the number of sample data from the dynamic physical
model of SOFC, y(k) is the predictive output of GA-RBF model,
Y(k) is the output of the dynamic physical model. Under various
hydrogen flows and current, the voltage identification model is
shown in Fig. 4. The RMSE of output voltage obtained is 1.2584
and 1.1836, respectively. The result shows that the GA-RBF
neural network can approximate the behavior of the physical
SOFC model with good accuracy.. The control input is shown
in Fig. 7

In normal working condition, the current of the SOFC system
is 300 A. The steady output of the voltage is 330 V. Assuming
at =200 s, a load disturbance causes the stack current to have a
step change (from 300 to 255 A), and at t=550s, a load distur-
bance causes the stack current to have a step change (from 255
to 345 A). The series of step in stack current input are shown
in Fig. 5. The predictive controller is used to adjust the voltage
to its steady value. In this paper, let the predictive horizon be

350

340t .
330} .
320t .
310t .
300 .

Current (A)

2901 1
2801 1
270 b
260 1

250 1 1 1 1 1 1 1 1 1
0 100 200 300 400 500 600 700 800 900 1000

Time (s)

Fig. 5. Step increase in cell current.
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340
335 k 1
330

3251 .

Voltage (V)

320 §

315} 1

310

0 100 200 300 400 500 600 700 800 900 1000
Time (s)

Fig. 6. Trajectories of SOFC voltage by MPC.

m =10, and the control horizon n=4. We can get the tracking
curve of the controlled voltage of the SOFC system, which is
shown in Fig. 6. From Fig. 6, we can get when the stack cur-
rent fluctuates the voltage is changed rapidly and then returns
to the reference value. Based on the results, we can get the fuel

0.95 T T T T T T T T T

0.9

0.85

0.8

0.75

Input hydrogen flow (mol-s)

0.7

065 1 1 1 1 1 L 1
0 300 400 500 600 700 800 900 1000

Time (s)

100 200

Fig. 7. Curves of manipulated variable qg‘z.

0.951 b

0.85 i

Utilization

0.75 b

0.7
0

300 400 500 600 700 800 900 1000

Time (s)

100 200

Fig. 8. Fuel utilization response by MPC.

0.95}¢ J

0.9} J

085 B
0.8

0.75 4

Utilization

0.7 L L
0 100 200

1 1 1 1 1 A1 1
300 400 500 600 700 800 900 1000

Time (s)

Fig. 9. Fuel utilization response by constant fuel utilization control.

7 085[ .
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; 08' 7
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3 0.75F 1
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©
o 0.7t -
o
E]
S o065t -
08 1 1 1 L Il 1 1 1 1
0 100 200 300 400 500 600 700 800 900 1000

Time (s)

Fig. 10. Curves of manipulated variable gs.

utilization response curve of the SOFC system, which is shown
in Fig. 8. The result shows that the predictive control scheme
can guarantee the fuel utilization of the SOFC operating within
a safe range when load changes.

Now we use the same load disturbances as before and use
the constant fuel utilization control method. The tracking curve
of the controlled fuel utilization of the SOFC system is shown
in Fig. 9. And the manipulated variable gr is shown in Fig. 10.
Comparing Fig. 8 with Fig. 9, we can get the conclusions: the
constant fuel utilization control method is simpler; however the
fuel utilization ur has a larger excursion from the safe range
when the stack current changes from 255 to 345 A at t=550s.

6. Conclusions

Fuel utilization is one of the most important controlled
variables in the SOFC system. In order to guarantee the fuel
utilization would operate within a safe range, a nonlinear pre-
dictive control algorithm based on a GA-RBF identification
model is proposed to control the SOFC output voltage as a
proper constant. By comparing the constant fuel utilization
control method with the nonlinear model predictive controller
scheme, the simulation results show that the MPC is com-
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plex, however, it guarantees the fuel utilization performs more
safely.
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