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bstract

Transients in a load have a significant impact on the performance and durability of a solid oxide fuel cell (SOFC) system. One of the main
easons is that the fuel utilization changes drastically due to the load change. Therefore, in order to guarantee the fuel utilization to operate within
safe range, a nonlinear model predictive control (MPC) method is proposed to control the stack terminal voltage as a proper constant in this
aper. The nonlinear predictive controller is based on an improved radial basis function (RBF) neural network identification model. During the
rocess of modeling, the genetic algorithm (GA) is used to optimize the parameters of RBF neural networks. And then a nonlinear predictive
ontrol algorithm is applied to track the voltage of the SOFC. Compared with the constant fuel utilization control method, the simulation results
how that the nonlinear predictive control algorithm based on the GA-RBF model performs much better.

2007 Elsevier B.V. All rights reserved.
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. Introduction

Compared to conventional heat engines, steam and gas tur-
ine, and combined cycles, fuel cells are considered as an
fficient electrical power generator. Among the various types
f fuel cell, solid oxide fuel cell (SOFC) has attracted consid-
rable interest as it offers wide application ranges, flexibility
n the choice of fuel, high system efficiency and possibility of
peration with an internal reformer [1].

Transients in a load have a significant impact on the life of
he SOFC. One of the reasons is that the fuel utilization changes
rastically due to the load transient. Fuel utilization uf is one
f the most important operating variables of the SOFC system.
n overused-fuel condition (uf > 0.9) could lead to permanent
amage to the cells due to fuel starvation and an underused-
uel condition (uf < 0.7) results in a rapid rise of the cell voltage
2]. For protecting the SOFC stack, the desired range of fuel

tilization is from 0.7 to 0.9.

During the last decades, numerous dynamic models have been
eveloped to study the effects of load transients on the perfor-
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dictive control (MPC)

ance and durability of the SOFC system [3–6]. These models
nclude the electrochemical, thermal and mass flow aspects of
uel cell operation. Unfortunately, very few articles are avail-
ble on the development of effective control strategies of the
uel utilization.

The terminal voltage and the fuel utilization cannot be kept
onstant simultaneously when load changes [7]. So there are
wo control strategies, which can guarantee the fuel utilization to
perate within a safe range. One is directly controlling the input
ydrogen fuel in proportion to the stack current, and the constant
tilization control can be accomplished, which is analyzed in
ef. [8]. The other one is to maintain a constant cell voltage
t the SOFC terminal. One proper value for cell voltage can
uarantee the fuel utilization within the desired safe rang when
he load changes.

In this paper, a nonlinear model predictive control (MPC)
cheme is proposed to control the voltage and guarantee the fuel
tilization within a safe range. The SOFC system is an uncertain
onlinear system and its structure and parameters vary with the
hange of operating point. So the controller should be robust to
ncertainty and meet closed-loop objectives such as tracking,
egulation and disturbance attenuation.
MPC is a feedback control strategy based on a predictive
odel and receding horizon optimization. The important advan-

age of MPC comes from the predictive model, which allows the
esign of controller in bigger horizon than the other control

mailto:xj_wu@sjtu.edu.cn
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Nomenclature

bi width of Gaussian membership function
ci center of Gaussian membership function
CV conversion factor
E open-circuit reversible potential (V)
E0 standard reversible cell potential (V)
F Faraday’s constant (c mol−1)
I stack current (A)
IL limiting current (A)
KH2 valve molar constants for hydrogen (mol s−1 Pa)
KH2O valve molar constants for water (mol s−1 Pa)
KO2 valve molar constants for oxygen (mol s−1 Pa)
Kr constant
n number of electrons participating in the reaction
N number of cells in the stack
pH2 partial pressure of hydrogen (atm)
pH2O partial pressure of water (atm)
pO2 partial pressure of oxygen (atm)
P cell pressure (atm)
Pdc rated power (kW)
qf nature gas flow rate(mol s−1)
qin

H2
input hydrogen flow (mol s−1)

qo
H2

output hydrogen flow (mol s−1)

qr
H2

hydrogen flow that reacts (mol s−1)

qin
i input flow (mol s−1)

qo
i output flow (mol s−1)

qr
i flow that reacts (mol s−1)

qin
O2

input oxygen flow (mol s−1)
rH–O hydrogen–oxygen flow ratio
R gas constant (J mol−1 K)
ROhmic Ohmic resistance (�)
T cell temperature (K)
ui membership function
uf fuel utilization
U output voltage (V)
Ur rated voltage (V)
V compartment volume (m3)

Greek symbols
α electron transfer coefficient at the electrode
β Tafel slope
ηact activation losses (V)
ηconc concentration loss (V)
ηOhmic Ohmic losses (V)
τH2 response time for hydrogen flow (s)
τH2o response time for water flow (s)
τO2 response time for oxygen flow (s)

a
f
T
e

m
t
t
t
t
c
n
t
o
f
a
[
w
v
t
a
v
p
m
o
G
i
s
o
u
u
a
t
m

d
m
c
d
l
a
t

2

r
t
m
w
t

a
p
c
t
e

τ1 reformer time constants (s)
∂ Tafel constant
lgorithms without the form of predictive model [9]. There-
ore, the model is the key to determine the control quality.
he traditional approach usually is based on approximate lin-
arization theory, which is often difficult to identify an accurate
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athematical model of the system and imposes serious restric-
ions on the structure of nonlinear systems [10]. Moreover,
he robustness of the closed-loop system cannot be guaran-
eed, especially when the parameters of plant are uncertain or
here is noise or disturbance in the process [11]. Therefore spe-
ific nonlinear modeling approaches might be required. Neural
etworks are considered as an attractive structure to establish
he mathematical relationship of the dynamic system based
n the input–output data. A RBF neural network is a feed-
orward neural network with one hidden layer and can uniformly
pproximate any continuous function to a prospected accuracy
12]. However, a key problem by using the RBF neural net-
ork approach is about how to choose the optimum initial
alues of the following three parameters: the output weights,
he centers and widths of the hidden unit. If they are not
ppropriately chosen, the RBF neural network may degrade
alidity and accuracy of modeling [13]. To assure the optimal
erformance of the RBF neural network approach for SOFC
odeling, we consider applying a genetic algorithm (GA) to

ptimize the RBF neural network parameters in this study.
enetic algorithms are a kind of self-adaptive global search-

ng optimization algorithm based on the mechanics of natural
election and natural genetic [14]. Different from conventional
ptimization algorithms, genetic algorithms are based on pop-
lation, in which each individual is evolved parallel, and the
ltimate result is included in the last population. In this paper,
physical model of a 100 kW SOFC system is used to generate

he data required for the training and predicting of the GA-RBF
odel.
This paper is organized into six sections. Section 2 briefly

escribes the SOFC system. A dynamic SOFC mathematical
odel is built in Section 3. In Section 4 a nonlinear predictive

ontrol algorithm based on a GA-BRF model is explained in
etail. In addition the constant fuel utilization method is also ana-
yzed. Section 5 shows the results obtained with the two control
lgorithms. The last section concludes the paper by analyzing
he obtained results.

. SOFC system description

The SOFC system includes a fuel processing unit or the
eformer and a fuel cell stack. Hydrogen is a main fuel for most
ype of fuel cells. Nevertheless, other fuels such as methane,
ethanol, ethanol, gasoline and oil derivatives can also be used
hen a reformer is included in a fuel cell system for converting

he fuel to hydrogen.
The basic components of the SOFC are anode, cathode

nd two ceramic electrodes. In the fuel cell, fuel is sup-
lied to the anode and air is supplied to the cathode. At the
athode–electrolyte interface, oxygen molecules accept elec-
rons coming from the external circuit to form oxide ions. The
lectrolyte layer allows only oxide ions to pass through and at

he anode–electrolyte interface, hydrogen molecules present in
he fuel react with oxide ions to form steam and electrons get
eleased. These electrons pass through the external circuit and
each the cathode–electrolyte layer, and thus the circuit is closed
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15]. The electrochemical reactions are given as follows:

node side : H2 + O2− → H2O + 2e− (1)

athode side : 1/2O2 + 2e− → O2− (2)

alance reaction : H2 + 1/2O2 → H2O (3)

A single cell produces an open-circuit voltage of approxi-
ately 1 V, so fuel cells have to be connected together in a series

rrangement to form a stack.
Fuel utilization is one of the most important operating vari-

bles that may affect the performance of fuel cell. It is defined
s

f = qin
H2

− qo
H2

qin
H2

= qr
H2

qin
H2

= NI

2Fqin
H2

(4)

. SOFC system dynamic model

.1. Fuel processing unit model

In Ref. [16], the author introduced a simple model of a
eformer that generates hydrogen through reforming methane.
he model is a second-order transfer function. Ref. [7] shows

hat fuel process approximated by first-order transfer functions
as suitable for simulation point of view. So the mathematical

orm of the model can be written as follows:

qin
H2

qf
= CV

τ1s + 1
(5)

When these reactants are fed into the SOFC stack where the
eaction described by Eq. (3) occurs, from which it is seen that
ull reaction ratio between hydrogen and oxygen is 2 to 1. In
rder to allow for oxygen to completely react with hydrogen and
aintain the pressure difference between the anode and the cath-

de below a certain threshold value, excess oxygen is provided.
nd oxygen flow rate is determined using the hydrogen–oxygen
ow ratio rH–O.

.2. SOFC stack model

.2.1. Electrochemical model
The electrochemical oxidation of CO is not considered in our

tudy, because data in the literature show that the electrochemical
xidation of hydrogen is faster than that of CO [17]. Hence, the
ernst voltage E is mainly dependent on the electrochemical

eaction of H2.
In terms of input and output flow rates and exit molarity, the

th component material balance for the fuel cell stack can be
ritten [18,19]:

dpi

dt
= RT

V
(qin

i − qo
i − qr

i ) (6)
According to the basic electrochemical relationships, the
ole flow that reacts qr

i can be calculated as

r
i = NI

2F
= 2KrI (7)

4
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Replacing the mole flow that reacts by Eq. (7), we can get
he following expression of the hydrogen partial pressure

d

dt
pH2 = RT

V
(qin

H2
− qo

H2
− 2KrI) (8)

For orifice that is choked, it could be considered that the molar
ow of any gas through the valve is proportional to its partial
ressure inside the channel, according to the expression

qH2

pH2

= KH2 (9)

Replacing the output flow by Eq. (9), applying the Laplace
ransformation to Eq. (8) and isolating the hydrogen partial pres-
ure, yields the following expressions:

H2 (s) = 1/KH2

1 + τH2s
(qin

H2
− 2KrI) (10)

here τH2 = V
KH2 RT

Similarly component balances for O2 and H2O lead to the
ollowing set of equations:

O2 (s) = 1/KO2

1 + τO2s
(qin

O2
− KrI) (11)

H2O(s) = 2KrI
1/KH2O

1 + τH2Os
(12)

.2.2. Operating cell voltage
The actual cell potential is decreased from its ideal potential

ecause of several types of irreversible losses, such as activation,
oncentration and Ohmic losses. The equation for polarization
s shown as follows:

act = ∂ + β log I (13)

conc = RT

2F
ln

(
1 − I

IL

)
(14)

Ohmic = I2R (15)

Applying Nernst’s equation and Ohm’s law (taking into
ccount Ohmic, concentration, and activation losses), the stack
utput voltage is represented as follows:

dc = E − ηOhmic − ηconc − ηact (16)

here E = N

(
E0 + RT

2F
ln

pH2 p
1/2
O2

pH2O

)
The dynamic physical model replaces the real SOFC stack to

enerate the simulation data required for the identification of the
A-RBF model. The parameters of the SOFC system are given

n Table 1. The data sources blocks developed in MATLAB is
hown in Fig. 1.

. SOFC control
.1. Constant voltage control

The basic frame of the proposed model predictive controller
or the SOFC system is shown in Fig. 2, where yr is the refer-
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Fig. 1. SOFC dyna

Table 1
The blocks developed in MATLAB

Parameter Unit Value

T K 1273
F C mol−1 96485
R J (mol K)−1 8.314
N – 384
E0 V 1
Kr mol (s A)−1 0.996 × 10−3

KH2 mol (s Pa)−1 8.32 × 10−6

KH2O mol (s Pa)−1 2.77 × 10−6

KO2 mol (s Pa)−1 2.49 × 10−5

τO2 s 2.91
τH2 s 26.1
τH2O s 78.3
ROhmic � 0.126
qin

H2
mol s−1 Variable

β – 0.11
∂ – 0.05
IL A 800
n – 2
U V Variable
I A Variable
τ1 s 5
rH–O – 1.145
CV – 1
Ur V 330
Pdc kW 100
ufs – 0.8

Fig. 2. Block diagram of the proposed control system.
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nce track of the control system, y and yR is the SOFC dynamic
odel output and the GA-RBF predictive model output, respec-

ively.
A nonlinear model that the controller will use for the opti-

ization is the first step in designing a nonlinear MPC system.
his model should be as accurate as possible, while being
imple enough to allow for repeated calculations during the
ptimization. If the dynamic model developed in Section 3
s applied in the predictive control scheme, it will consume

uch time to obtain the solutions. For this reason, a nonlin-
ar offline voltage model of SOFC is built by a GA-RBF neural
etwork.

.1.1. Predictive model based on GA-RBF neural network
Suppose the operating temperature and pressure of the SOFC

re kept constant in this paper. The oxygen flow is expressed by
sing the hydrogen–oxygen flow ratio, so the terminal voltage
is mainly influenced by the inlet hydrogen flow qin

H2
and cur-

ent I. The following NARMAX model is used to describe the
ontrolled voltage system

(k) = f [y(k − 1), y(k − 2), . . . , y(k − ny), u(k − 1),

u(k − 2), . . . , u(k − nu)] (17)

here y is the SOFC terminal voltage, u is the hydrogen flow
ate and current, ny and nu are the lags of the output and input,
espectively, and f(·) is a nonlinear function. In this section we
dopt a GA-RBF neural network to identify the nonlinear func-
ion f(·). The structure of the RBF neural network is shown in
ig. 3.

The output of hidden layer is[
(x − ci)T (x − ci)

]

i = exp −

2b2
i

(i = 1, 2, . . . , q) (18)

here x = (I, qin
H2

)
T

, Ci = (ci1, ci2)T is the center of the ith RBF
idden unit, and bi is the width of the ith RBF hidden unit.
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Fig. 3. The structure of the RBF neural network.

The output is

R =
q∑

i=1

wiui (19)

here yR = U; w = [w1, w2,. . .wq]T is the neural network weight
hat connects output yR and neuron i in the hidden layer.

In our case, it is done by minimizing the following quadratic
ost function of the output error. This error is calculated by
omparing the output value of the network and the desired output
alue.

= 1

2

M∑
k=1

[yR(k) − y(k)]2 (20)

here yR is the output voltage calculated from neural network;
the output voltage of the dynamic physical model developed

n Section 3; M the number of training data. A gradient descent
lgorithm is adopted to minimize J. And the genetic algorithm is
sed to obtain the optimum initial values of the following three
arameters: the output weight wi, the centers ci and widths bi.

The predictive output of p step can be obtained by the GA-
BF model as [20]:

R(k + p) = fR[y(k + p − 1), y(k + p − 2), ...,

y(k + p − ny), u(k + p − 1), u(k + p − 2), ...,

u(k + p − nu)] (21)

And the error at instance k is defined as

(k) = y(k) − yR(k) (22)

Therefore the predictive output of feedback system is

(k + j) = yR(k + j) + e(k) (j = 1, 2, ..., p) (23)

here p is the predictive horizon. The method of the offline
odel is simple and convenient only if the experimental data or

xperience of the input and output variable is obtainable. It is
ot necessary to decide the coefficient of the SOFC material and
tructure of the mechanism model. Therefore it can be used in
he control system.
.1.2. Optimization algorithm
At each sample time k, a series of future output values y(k + j)

s calculated through GA-RBF predictive model and it is com-
ared to the reference output value yr(k). Referenced trajectories

w
b
s

ources 179 (2008) 232–239

f output voltage are introduced to avoid excessive movement
f the control input, which are defined as

r(k + j) = cjy(k) + (1 − cj)r (1 ≤ j ≤ p, 0 < c < 1)

(24)

here yr and y are the reference trajectories and predictive out-
ut, respectively. r is the system set value. The optimization
roblem for the model predictive controller is the minimization
f the sum of squared errors between the referenced trajectory yr
nd the predictive output y with an additional penalty imposed
n rapid changes in the manipulated variables. Define objective
unction as

(k) =
n∑

j=1

[yR(k + j) − yr(k + j)]2 +
m∑

j=1

λu2(k + i − 1)

u(k + i − 1) ∈ U∗ (25)

here n and m are the predictive horizon and control horizon,
espectively. U* = [umin, umax] is the control range. Golden mean
ethod is used to obtain the optimal output of controller u*(k),

he optimization process is presented as follows [20]:

Step 1: Define the initial searching area [α1, β1] = [umin,
umax]; the initial number of steps k = 1; and define ζ,
it is positive and adequately small; the initial searching
points are given as:λ1 = α1 + (1 − 0.618)(β1 − α1),λ′

1 = α1 +
0.618(β1 − α1). And then, compute the values of objective
function J(λ1) and J(λ′

1).
Step2: If βk − αk < �, then u(k) = (βk + αk)/2; Otherwise, if
J(λk) > J(λ′

k), go to step 3; if J(λk) > J(λ′
k), go to step 4.

Step 3: αk+1 = λk, βk+1 = βk, λk+1 = λ′
k, then λ′

k+1 = αk+1 +
0.618(βk+1 − αk+1); and then, compute the value of objective
function J(λ′

k+1), go to Step 5.
Step 4: αk+1 = αk, βk+1 = λ′

k, λ′
k+1 = λk, then

λk+1 = αk+1+(1 − 0.618)(βk+1 − αk+1); and then, com-
pute the value of objective function J(λk+1); go to Step
5.
Step 5: k = K + 1, return to Step 2.

After iterations for several times, the optimal control moves
*(k) can be obtained.

.2. Constant fuel utilization control

According to Eq. (4), the operation of the SOFC stack with a
uel input proportional to the stack current results in a constant
tilization factor in the steady-state. Thus, the SOFC is operated
ith a constant steady-state utilization factor by controlling the
atural gas flow to the stack as [8]

f = NI
(26)
2Fufs

here ufs is the desired utilization in steady-state. Furthermore,
ecause the fuel processor is specially considered, the relation-
hip between a small change of stack current 
I and a small
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bance causes the stack current to have a step change (from 255
to 345 A). The series of step in stack current input are shown
in Fig. 5. The predictive controller is used to adjust the voltage
to its steady value. In this paper, let the predictive horizon be
X.-J. Wu et al. / Journal of Po

hange of hydrogen input in 
qin
H2

fed to the SOFC stack can be
erived as [8]:

qin
H2

= N

2Fufs(1 + τfs)

I = 2Kr

ufs(1 + τfs)

I (27)

From Eq. (4), the small-signal relationship between 
uf, 
I,
nd Δqin

H2
about their initial steady-state values ufs, I0, and qin

H2, 0
an be written as

I = qin
H2, 0

2Kr

uf + ufs

2Kr

qin

H2
(28)

Under constant uf control, substituting Eq. (27) into Eq. (28),
nd Eq. (28) can be rewritten as

uf = ufs

I0

τfs

1 + τfs

I (29)

here I0 the initial stack current, is related to the initial qin
H2, 0

hrough Eq. (4).

. Simulation

In this section, we present numerical experiments to show
he validation of the proposed nonlinear predictive control
cheme based on the GA-RBF neural network model of the
OFC.

For the purpose of identification, the input signals of the
ynamic physical model developed in Section 3 are uniformly
andom, including the hydrogen flow rate (0–1.2 mol s−1) and
he current (0–800 A). To obtain values at integer time points, the
ourth-order Runge–Kutta method was used to find the numer-
cal solution to the dynamic physical model in the simulation.

set of 3000 data was collected from the simulation. The first
000 data were used for the identification of GA-RBF model,
hile the remaining 2000 data were used for validation pur-
oses.

In order to reduce the numbers of the parameters and improve
he speed of program debug, the hidden layer of the RBF neural
etwork is chosen 2 nodes. After many trials, a population size of
0, a crossover probability of 0.4, and a mutation probability of
.001 are used. The optimized initial values of the parameters are

hown in Table 2. After the optimized initial values of the three
arameters are obtained, we utilize the gradient descent learning
lgorithms to adjust them. Root mean square error (RMSE) is
mployed here to evaluate modeling results, which is calculated

able 2
he optimized initial values of widths, centers and output weights

1 0.4856

2 1.1062

11 0.5678

12 −0.3561

21 −0.8409

22 1.032

1 0.4567

2 −0.2365
Fig. 4. Cell terminal voltage under various current and hydrogen flow.

y

MSE =
√√√√ 1

N

N∑
k=1

(y(k) − ŷ(k))2 (30)

here N is the number of sample data from the dynamic physical
odel of SOFC, y(k) is the predictive output of GA-RBF model,

ˆ (k) is the output of the dynamic physical model. Under various
ydrogen flows and current, the voltage identification model is
hown in Fig. 4. The RMSE of output voltage obtained is 1.2584
nd 1.1836, respectively. The result shows that the GA-RBF
eural network can approximate the behavior of the physical
OFC model with good accuracy.. The control input is shown

n Fig. 7
In normal working condition, the current of the SOFC system

s 300 A. The steady output of the voltage is 330 V. Assuming
t t = 200 s, a load disturbance causes the stack current to have a
tep change (from 300 to 255 A), and at t = 550 s, a load distur-
Fig. 5. Step increase in cell current.
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m
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Fig. 9. Fuel utilization response by constant fuel utilization control.
Fig. 6. Trajectories of SOFC voltage by MPC.

= 10, and the control horizon n = 4. We can get the tracking
urve of the controlled voltage of the SOFC system, which is

hown in Fig. 6. From Fig. 6, we can get when the stack cur-
ent fluctuates the voltage is changed rapidly and then returns
o the reference value. Based on the results, we can get the fuel

Fig. 7. Curves of manipulated variable qin
H2

.

Fig. 8. Fuel utilization response by MPC.
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Fig. 10. Curves of manipulated variable qf.

tilization response curve of the SOFC system, which is shown
n Fig. 8. The result shows that the predictive control scheme
an guarantee the fuel utilization of the SOFC operating within
safe range when load changes.

Now we use the same load disturbances as before and use
he constant fuel utilization control method. The tracking curve
f the controlled fuel utilization of the SOFC system is shown
n Fig. 9. And the manipulated variable qf is shown in Fig. 10.
omparing Fig. 8 with Fig. 9, we can get the conclusions: the
onstant fuel utilization control method is simpler; however the
uel utilization uf has a larger excursion from the safe range
hen the stack current changes from 255 to 345 A at t = 550 s.

. Conclusions

Fuel utilization is one of the most important controlled
ariables in the SOFC system. In order to guarantee the fuel
tilization would operate within a safe range, a nonlinear pre-
ictive control algorithm based on a GA-RBF identification

odel is proposed to control the SOFC output voltage as a

roper constant. By comparing the constant fuel utilization
ontrol method with the nonlinear model predictive controller
cheme, the simulation results show that the MPC is com-
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